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Abstract
We show that the differences in stability of 3d–5d NiPt and 3d–4d NiPd
alloys arise mainly due to relativistic corrections. The magnetic properties
of disordered NiPd and NiPt alloys also differ due to these corrections, which
lead to increase in the separation between the s–d bands of 5d elements in
these alloys. For the magnetic case we also analyse the results in terms of
splitting of majority and minority spin d band centres of the 3d elements. We
further examine the effect of relativistic corrections to the pair energies and
order–disorder transition temperatures in these alloys. The magnetic moments
and Curie temperatures have also been studied along with the short range
ordering/segregation effects in NiPt/NiPd alloys.

1. Introduction

It is well known at the level of standard chemistry that the main chemical difference between
pairs of 4d and 5d transition elements is the relativistic contraction of the valence s and p states
relative to the d and f states. Recently, Wang and Zunger [1] studied ordered 3d–5d (NiPt)
and 3d–4d (NiPd) alloys and pointed out the effect of relativistic corrections in the formation
energies in these alloys. In this communication we shall provide a quantitative, electronic
structure analysis of these corrections in both the ordered as well as the disordered phases of
NiPt and NiPd alloys including magnetism as well, and demonstrate its consequences for phase
stability. We shall show, via a first-principles calculation, that in binary alloys of the late 3d–5d
intermetallics, the 3d–5d coupling is dominant. This effect results from the relativistic upshift
of the 5d band, which brings it closer to the 3d band of the other element,significantly enhancing
the 3d–5d hybridization. In addition, the relativistic s orbital contraction significantly reduces
the lattice constant of the 5d element, thus lowering the size mismatch with the 3d element.
This reduces the strain energy associated with packing 3d and 5d atoms of dissimilar sizes
into a given lattice. Both the enhanced d–d hybridization and the reduced packing strain
are larger in 3d–5d intermetallics than in 3d–4d ones. This explains why the 3d–5d alloys
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(NiPt in this case) have negative formation energies and thus form stable ordered alloys,
whereas the analogous isovalent 3d–4d alloys (NiPd),made of elements from the same columns
in the periodic table, have positive formation energies and thus either phase separate or remain
mostly in disordered phases. Simple arguments, such as ones based on atomic size mismatch
or electronegativity differences, do not explain these two different behaviours. The constituent
elements in the stable NiPt alloys have larger atomic size mismatch than the unstable NiPd.

Our calculation of pair energies shows that the inclusion of relativistic effects in the
electronic structure calculation is often important for getting the correct ordering behaviour
seen experimentally. It is known experimentally that NiPt is ordered at low temperatures while
NiPd remains disordered but with a tendency toward short ranged clustering. To obtain the
correct ordering tendency for NiPt we need to carry out scalar relativistic calculations. For
NiPd we have to carry out calculations on the disordered alloy with short ranged clustering
effects included, so as to give the correct magnetic moment per atom.

From experiments, the difference in magnetic properties of disordered NiPd and NiPt
alloys does not seem to be obvious, as Pd and Pt have the same number of valence electrons.
Earlier works [2–4] on the magnetic properties of NiPd and NiPt alloys used parametrized
local environment models to describe the magnetism in NiPd and NiPt alloys. These models
incorporated the changes induced due to the chemical environment as well as the magnetic
environment. The present study is intended to improve our understanding of the factors which
led to differences in the magnetic properties of disordered NiPd and NiPt alloys and to determine
the effect of chemical, as well as magnetic, environments from a first-principles approach.

In an earlier communication [5] we have pointed out that the environmental effect is
important in NiPt alloys. The environmental effect is intrinsically a many-site problem. An
approximate treatment of correlation effects between a site and its neighbours has been carried
out within a single-site coherent potential approximation by Staunton et al [6]. However,
any approximation that explicitly involves more than one site is expected to give a better
qualitative and quantitative picture. The recently developed itinerant cluster approximation of
Ghosh et al [7] is one example. So far it has been applied only to phonons. The augmented
space recursion (ASR) [8] used in our work is another. Both these techniques are based upon
the augmented space theorem [9]. The reason for emphasizing environment effects for alloys
of Ni with non-magnetic metals (such as Pt and Pd) is that the local magnetic moment of Ni
in such an alloy is strongly dependent on its environment. In a fcc lattice, a Ni atom has to be
surrounded by at least six other Ni atoms; otherwise no local moment can be sustained on it. In
this paper we find that in NiPd short ranged segregation occurs in an otherwise disordered alloy.
This actually enhances ferromagnetic behaviour on a par with the experimental predictions.

The differences in the magnetic properties of NiPd and NiPt alloys are also dictated by the
electronic structure of 4d Pd and 5d Pt atoms and the subsequent hybridization of these states
with the d states of Ni atoms. Since relativistic corrections are more important for heavier
elements, the differences in electronic structure of Pd and Pt atoms are mainly due to relativistic
effects.

2. Theoretical and computational methods

For ordered structures we have performed total energy density functional calculations. The
Kohn–Sham equations were solved in the local density approximation (LDA) with von Barth–
Hedin (vBH) [10] exchange correlations. The calculations were performed in the basis of tight
binding linear muffin-tin orbitals in the atomic sphere approximation (TB-LMTO-ASA) [11–
14] including combined corrections. Two sets of calculations have been performed: one
scalar relativistic through inclusion of mass–velocity and Darwin correction terms and another
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without. The k-space integration was carried out with a 32×32×32 mesh resulting in 2601 k-
points for tetragonal primitive structures in the irreducible part of the corresponding Brillouin
zone. The convergence of the total energies with respect to k-points has been checked.

As we know, when the alloy is formed the elemental solids are deformed from their
equilibrium lattice constants (a0

A, a0
B) to the lattice constants (a) of the final alloy. Therefore,

in the alloy formation there are two kinds of formation energies. One is elastic formation
energy which is given as

�Helast = x[EA(a) − EA(a0
A)] + (1 − x)[EB(a) − EB(a0

B)]

and another is chemical formation energy which is given as

�Hchem = E(Ax B1−x ; a) − x EA(a) − (1 − x)EB(a)

where x is the concentration of one of the constituents.
The sum of these formation energies is the conventional alloy formation energy:

�H = �Helast + �Hchem. (1)

For stability arguments, we start from a completely disordered alloy. Each site R has an
occupation variable nR associated with it. For a homogeneous perfect disorder 〈nR〉 = x , where
x is the concentration of one of the components of the alloy. In this homogeneously disordered
system we now introduce fluctuations in the occupation variable at each site: δxR = nR − x .
Expanding the total energy in this new configuration about the energy of the perfectly disordered
state we get

E(x) = E (0) +
N∑

R=1

E (1)

R δxR +
N∑

R R′=1

E (2)

R R′δxRδxR′ + · · · . (2)

The coefficients E (0), E (1)
R . . . are the effective renormalized cluster interactions. E (0) is the

energy of the averaged disordered medium. The renormalized pair interactions E (2)
R R′ express

the correlation between concentration fluctuations at two sites and are the dominant quantities
for the analysis of phase stability. In the series expansion, we will retain terms only up to
pair interactions. Higher order interactions may be included for a more accurate and complete
description.

The total energy of a solid may be separated into two terms: a one-electron band
contribution EBS and the electrostatic contribution EES. The renormalized cluster interactions
defined in (2) should, in principle, include both EBS and EES contributions. Since the
renormalized cluster interactions involve the difference of cluster energies, it is usually assumed
that the electrostatic terms cancel out and only the band structure contribution is important.
Such an assumption, which is not rigorously true, has been shown to be approximately valid
in a number of alloy systems [15]. Considering only band structure contributions, it is easy to
see that the effective pair interactions may be written as

E (2)
R R′ = EAA

R R′ + EBB
R R′ − EAB

R R′ − EBA
R R′ . (3)

We have computed these pair energies using augmented space recursion with the TB-LMTO
Hamiltonian coupled with orbital peeling which allows us to compute configuration averaged
pair potentials directly, without resorting to calculations involving small differences of large
total energies. The details of this method are given in our previous paper [16] and the references
therein.

For the calculation of the order–disorder transition temperature we have used
Khachaturian’s concentration wave approach in which the stability of a solid solution with



5794 D Paudyal and A Mookerjee

respect to a small concentration wave of given wavevector �k is guaranteed as long as
kBT + V (�k)c(1 − c) > 0. Instability of the disordered state sets in when

kBT i + V (�k)c(1 − c) = 0. (4)

T i is the instability temperature corresponding to a given concentration wave disturbance. V (�k)

is the Fourier transform of pair energies and c is the concentration of one of the constituent
atoms. The details are given in our previous paper [16] and references therein.

The antiphase boundary energies between L10 and L12 structures and their corresponding
superstructures A2B2 and D022 [17] are

ξ = −V2 + 4V3 − 4V4; (5)

for ξ > 0, L12 and L10 are the stable structures at concentration 25% and 50%, while for
ξ < 0, the stable superstructures are DO22 and A2B2.

Our magnetic calculations are based on the generalized ASR technique [5, 18–22]. The
Hamiltonian in the TB-LMTO minimal basis is sparse and therefore suitable for treatment with
the recursion method introduced by Haydock et al [23]. The ASR allows us to calculate the
configuration averaged Green functions. It does so by augmenting the Hilbert space spanned
by the TB-LMTO basis with the configuration space of the random Hamiltonian parameters.
The configuration average is expressed exactly as a matrix element in the augmented space.
A generalized form of this methodology is capable of taking into account the effect of short
range order. Details are given in our previous paper [5] and references therein.

For the treatment of the Madelung potential, we follow the procedure suggested by
Kudrnovský et al [24] and use an extension of the procedure proposed by Andersen et al
[11]. We choose the atomic sphere radii of the components in such a way that they preserve
the total volume on average and the individual atomic spheres are almost charge neutral. This
ensures that total charge is conserved, but each atomic sphere carries no excess charge. In
doing so, one needs to be careful about the sphere overlap which should be under a certain
limit so as not to violate the atomic sphere approximation.

To calculate the Curie temperature TC we have used the Mohn–Wohlfarth (MW)
procedure [25]:(

TC

TS

)2

+
TC

TSF
− 1 = 0

where TS is the Stoner temperature calculated from the relation

〈I (EF)〉
∫ ∞

−∞
dE N(E)

(
∂ f

∂ E

)
= 1.

〈I (EF)〉 is the concentration averaged Stoner parameter, N(E) is the density of states per atom
per spin of the paramagnetic state [26] and f (E) is the Fermi distribution function. The spin
fluctuation temperature TSF is given by

TSF = m2

10kB〈χ0〉 .
〈χ0〉 is the concentration weighted, exchange enhanced spin susceptibility at equilibrium and
m is the averaged magnetic moment per atom. χ0 is calculated using the relation given by
Mohn [25] and Gersdorf [27]:

χ−1
0 = 1

2µ2
B

(
1

2N↑(EF)
+

1

2N↓(EF)
− I

)
.

N↑(EF) and N↓(EF) are the spin-up and spin-down partial densities of states per atom at
the Fermi level for each species in the alloy.
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Table 1. Formation energies in mRyd/atom and lattice parameters in au. The values shown in
brackets are the ones without relativistic corrections.

Alloy system �Hform �Helastic �Hchemical a c/a

NiPd (this work) 3.54 (5.38) 17.05 (18.13) −13.51 (−12.75) 7.10 0.923
Wang and Zunger [1] 3.63 (6.22) 19.83 (21.05) −16.20 (−14.83) 7.11 0.924

NiPt (this work) −9.17 (4.44) 22.22 (31.48) −31.39 (−27.04) 7.16 0.927
Wang and Zunger [1] −6.26 (8.17) 29.74 (40.38) −36.00 (−32.21) 7.175 0.926

In these calculations one also needs to be very careful about the convergence of our
procedure. Errors can arise in the augmented space recursion because one can carry out only
a finite number of recursion steps and then terminate the continued fraction using available
terminators. We ensure that the recursion is carried out for a sufficient number of steps so
that the errors in Fermi energy, moments of the density of states and magnetic moment remain
within prescribed windows.

The formulation of the augmented space recursion used for the calculation in the present
paper is the energy dependent augmented space recursion in which the disordered Hamiltonian
with diagonal as well as off-diagonal disorder is recast into an energy dependent Hamiltonian
having only diagonal disorder. We have chosen a few seed points across the energy spectrum
uniformly, carried out recursion on those points and spline fitted the coefficients of recursion
throughout the whole spectrum. This enabled us to carry out a large number of recursion steps
since the configuration space grows significantly less quickly for diagonal as compared with
off-diagonal disorder. Convergence of physical quantities with recursion steps was discussed
in detail earlier by Ghosh et al [28, 29].

3. Results and discussion

3.1. Calculations on ordered alloys

3.1.1. Formation energies. In table 1, we show the calculated formation energies of the
L10 structure of NiPd and NiPt alloys calculated relativistically (including mass–velocity and
Darwin corrections but without spin–orbit couplings) as well as non-relativistically. The table
shows the lattice parameters calculated by minimizing the total energy. The parameter a
and the ratio c/a are in very good agreement with those found by Wang and Zunger [1] (see
table 1). The relativistically calculated formation energies (in mRyd/atom) are 3.54 and −9.17
for NiPd and NiPt. We see a clear ordered alloy formation trend for NiPt as contrasted with the
disordering trend of NiPd. To gain better insight into those trends, we have decomposed the
total formation energies into chemical formation energies and elastic formation energies. The
elastic energy of formation is the energy needed to deform the elemental solids A and B from
their respective equilibrium lattice constants and to the lattice constants of the final AB alloy.
Since a deformation of equilibrium structures is involved, the chemical energy of formation is
simply the difference between the (fully relaxed) total energy of the alloy and the energies of
the deformed constituents. In general the elastic formation energy is positive and the chemical
formation energy is negative. The sum gives the conventional definition of alloy formation
energy and the system is stable only if this formation energy is negative. This clearly shows
that a lower volume deformation energy of the constituents enhances the (negative) chemical
formation energy giving rise to the possibility of forming a stable ordered alloy.

Table 1, shows that the relativistic effect significantly reduces the elastic energy of
formation of 3d–5d alloys (e.g. from 31.48 to 22.22 mRyd/atom for NiPt). This effect is
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Table 2. Band centres (C) mRyd/atom. The values shown in brackets are the ones without
relativistic corrections.

Alloy system Site (A/B) s orbital p orbital d orbital

NiPd Ni −359.0 (−343.6) 676.3 (650.5) −217.1 (−228.0)
Pd −317.6 (−240.8) 746.2 (763.1) −321.9 (−335.0)

NiPt Ni −349.4 (−347.2) 707.0 (641.4) −210.5 (−227.9)
Pt −524.0 (−283.8) 642.1 (694.0) −324.8 (−366.3)

Table 3. Hopping integrals (�) mRyd/atom. The values shown in brackets are the ones without
relativistic corrections.

Alloy system Site (A/B) s orbital p orbital d orbital

NiPd Ni 176.1 (172.6) 155.9 (152.7) 9.9 (9.4)
Pd 182.3 (184.8) 186.7 (184.3) 22.7 (21.1)

NiPt Ni 177.6 (167.6) 151.5 (142.8) 9.4 (8.4)
Pt 163.6 (175.0) 186.4 (183.4) 29.8 (25.5)

much smaller in the 3d–4d systems (e.g. from 18.13 to 17.05 mRyd/atom in NiPd). The
reason for this can also be appreciated by inspecting the non-relativistically and relativistically
calculated equilibrium lattice constants of the fcc elements as already shown by Wang and
Zunger [1].

In addition to the reduction in the (positive) elastic energy of formation, table 1 also shows
that relativistic corrections enhance the (negative) chemical energy of formation (e.g. from
−27.04 to −31.39 mRyd/atomfor NiPt). This effect is much smaller in 3d–4d alloys (e.g. from
−12.75 to −13.51 mRyd/atom for NiPd). There are two effects that explain this relativistic
chemical stabilization. First the relativistic raising of the energy of the 5d state reduces the
3d–5d energy difference and thus improve the 3d–5d bonding; second the relativistic lowering
of the s bands and raising of the d band leads to an increased occupation of the bonding s bands
and a decreased occupation of the antibonding d band. These effects can be appreciated by
observing the band centres shown in table 2; we can see that the 5d and 3d bands are closer to
each other in the relativistic limit than in the non-relativistic limit and play an important role in
the formation energies of these alloys. From table 3, it is seen that the difference between the
hopping integrals for 3d and 5d is higher than the difference between the hopping integrals for
3d and 4d in the relativistic case, which is the signature of higher overlap and hence stability in
NiPt alloys with relativistic corrections. The d–d interaction from different sublattices in late
d alloys plays a key role. Relativity results in the raising of the energy of the 5d band (bringing
the 5d band closer to the 3d band) and in a large charge transfer from the antibonding edge of the
5d band to the bonding 6s, p bands, thus enhancing the chemical stability of the 3d–5d alloys.

Although our calculations were based on the TB-LMTO and the von Barth–Hedin
exchange correlation, while those of Wang and Zunger [1] were based upon the full potential
linearized augmented plane wave method with exchange–correlation functional of Ceperley
and Alder parametrized by Perdew and Zunger [1], the differences of the various energy terms
are no more than a few mRyd/atom, which is within the error window of our methodology.

3.1.2. Separation between s and d band centres. It is seen that phase stability in 3d–5d alloys
is brought about by relativity through its effect on heavier atoms. We know that the dominant
effect of relativity is to lower the s potential. From table 2 it is clearly seen that the energy
band centre of Pt in NiPt is lower in the relativistic case than in the non-relativistic case. The
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Table 4. Pair energies in mRyd/atom. The values shown in brackets are the ones without
relativistic corrections.

Alloy system v1 v2 v3 v4

NiPd 5.16 (4.56) 0.02 (−0.16) 0.05 (0.09) 0.07 (0.09)
NiPt 10.08 (10.11) 0.10 (0.13) 0.01 (0.25) −0.24 (0.17)

lowering of the s potential causes (i) the s wavefunction to contract leading to a contraction of
the lattice and (ii) increased s–d hybridization which results in electron transfer from d to s.
We see that the change in s–d separation is greater in Pt in NiPt alloys than in Pd in NiPd. The
s–d separation for Pd in NiPd alloy changes from 94.3 to 4.3 mRyd, whereas for Pt in NiPt
alloy, it changes from 82.5 to −199.2 mRyd. The contraction of the s wavefunction of Pt and
the subsequent s–d hybridization must be responsible for the reduction in the size mismatch
and hence reduces the strain in NiPt alloys giving rise to the stable structures.

3.2. Calculations for disordered alloys

3.2.1. Effective pair energies. In table 4, we show the effective pair energies up to fourth-
nearest neighbours in 3d–4d NiPd and 3d–5d NiPt alloys.

The first-nearest neighbour pair interaction in NiPt shows ordering behaviour. Indeed,
with the relativistic correction, the antiphase boundary energy indicates a stable ordered
L10 low temperature phase. The formation energy of the L10 phase is negative, confirming
stability. However, the formation energy in NiPt with the non-relativistic calculation turns out
to be positive, which shows the necessity of including relativistic corrections in the electronic
structure calculations.

For NiPd we have a problem. Although the positive nearest neighbour pair interaction
indicates an ordering tendency, even with relativistic correction the antiphase boundary energy
and the formation energies indicate that the ordered structure is not stable at low temperatures.
This remains true even if we include magnetic effects in the pair interaction. This alloy
remains disordered at low temperatures. However, whether this is because of the fact that
at low temperatures the atomic mobilities are too low for ordering to proceed quickly (as in
AgPd, for example) one cannot say with certainty.

3.2.2. Order–disorder transition temperatures. Using these pair interactions obtained by us,
we have calculated the instability temperatures in NiPt with relativistic corrections. For the
entropy part we have taken a simple mean-field Bragg–Williams expression. The calculated
instability temperature in NiPt comes out as 1683 K, which is higher than the experimental
estimate which was discussed in great detail in our previous paper [16]. The Bragg–Williams
expression tends to overestimate the transition temperature, consistent with our results.

Our calculations (with relativistic corrections) indicate that the order–disorder transition
takes place in NiPd at around (812 K), slightly above the non-relativistic one (743 K). Although
first-principles calculation indicates there should be a disorder–order transition, low atomic
mobility prevents a transition to order in this alloy system. This is similar to the AgPd alloy
system case. Since there is no experimental evidence of an order–disorder transition in this
system, we only comment that this system mainly tends to remain in a disordered phase.
Looking at the high value (457 K) of the experimental Curie temperature we can argue that,
there, magnetism should have an effect on the phase stability of the NiPd system, reducing the
value of the order–disorder transition temperature. Our calculation including magnetism did
indeed lower the order–disorder transition temperature.
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Figure 1. The paramagnetic density of states for d bands of Ni in ordered NiPd (dotted curves)
and NiPt alloys (solid curves).

3.3. Magnetic calculations for NiPd and NiPt alloys

In figure 1, we show the paramagnetic density of states for d bands of Ni in ordered NiPd and
NiPt alloys. It is seen that the d band of Ni is narrow in NiPd in comparison to NiPt, which
suggests that Ni in NiPd has a higher magnetic moment than Ni in NiPt alloys.

To understand quantitatively the differences in magnetic properties of these two systems,
we have studied the separation between the majority and minority spin d band centres, the
separation between s and d band centres and the spin polarized density of states in these NiPd
and NiPt alloys.

3.3.1. Separation between majority and minority spin d band centres. The changes in the
magnetic moments due to relativistic effects can be explained by examining the separation
between majority spin and minority spin d band centres of Ni (�CNi

d↑−d↓) in NiPd and NiPt
alloys.

We observe that the exchange-induced splitting of the d band is higher in Ni–Pd alloys
for calculations done with and without relativistic corrections. The higher splitting leads to an
increase in the local magnetic moment at the Ni site. It is interesting to note that the inclusion
of relativistic corrections produces no net change in the exchange-induced splitting at the Ni
site in NiPd. In NiPd, due to these corrections, the separation between d band centres changes
from 55.4 to 57.3 mRyd/atom, giving rise to 0.75–0.76 µB/atom. On the other hand, in
NiPt alloy we find that relativity substantially reduces the exchange-induced splitting at the
Ni site, leading to a decrease in the local magnetic moment of Ni. In NiPt the separation
between d band centres reduces from 46.0 to 21.9 mRyd/atom due to relativity giving rise to
the corresponding reduction in the local magnetic moment from 0.59 to 0.30 µB/atom.

3.3.2. Separation between s and d band centres. It is clear that the differences in magnetic
properties of Ni–Pd and Ni–Pt alloys are brought about by relativity through its effect on Pd
and Pt atoms. We know that the dominant effect of relativity is to lower the s potential. The
lowering of the s potential causes (i) the s wavefunction to contract leading to a contraction of
the lattice and (ii) increased s–d hybridization which results in electron transfer from d to s. We
see that the change in the s–d separation is greater in Pt than in Pd. The s–d separation for Pd
in NiPd alloy changes from +59.0 to 7.6 mRyd, whereas for Pt in NiPt alloy, it changes from



Phase stability and magnetism in NiPt and NiPd alloys 5799

–40

–20

0

20

40
SR
NR

EF

 –0.4  –0.2 0  –0.4  –0.2 0
 –40

 –20

0

20

40

D
O

S 
(S

ta
te

s 
/ R

yd
 a

to
m

 s
pi

n)
 

Ni in NiPd Ni in NiPt

(E – E  ) RydF

Figure 2. The spin polarized densities of states of Ni, calculated non-relativistically (NR) and
scalar relativistically (SR), in disordered NiPd and NiPt alloys.

+84.0 to −199.1 mRyd. Thus the contraction of the s wavefunction of Pt and the subsequent
s–d hybridization must be responsible for reducing the local magnetic moment at the Ni site
in NiPt.

3.3.3. Spin polarized densities of states. In figure 2 we show the spin polarized DOS at the
Ni site for disordered NiPd and NiPt alloys calculated with and without relativistic corrections.
Since relativity is more important for NiPt than for NiPd, its effect on the DOS at the Ni site in
NiPt is clearly seen. From the figure we see the substantial differences in density of electrons
at the Fermi level between the non-relativistic and scalar relativistic cases for NiPt alloy, but
there are negligible differences in the case of NiPd.

3.3.4. Magnetic moments. From table 5 it is seen that magnetic moments calculated with
and without relativistic corrections are similar in ordered as well as disordered NiPd alloys.
However, the calculated average as well as local magnetic moments are quite different, for
ordered as well as disordered NiPt alloys, in the cases with and without relativistic corrections.
We find that the inclusion of relativity leads to a decrease in the magnetic moment at the
Ni site by 0.29 µB/atom in the NiPt alloy system. Our theoretically calculated disordered
magnetic moment of NiPt with relativistic correction agrees with experimental estimates.
Experimentally, NiPt has the effect of atomic short range order. With the inclusion of short
range order effects we could get the magnetic moment of Ni even closer to the experimental
value. The short range order effect in the magnetism of the NiPt system is more important for the
higher concentrations of Pt (55% and 57%) which we described in our previous paper [5]. The
calculated magnetic moment of Ni in NiPd alloy is very low (0.76 mRyd/atom) in comparison
to the diffuse scattering experiment result (1.02 mRyd/atom). This disagreement led us to
suspect an effect of short range order on the magnetism of NiPd alloy. In order to check for a
possible short range order effect, we have checked the variation of the total energy as a function
of the short range order parameter and found that the total energy decreases as the short range
order parameter goes from negative (ordering side) to positive (segregation side), confirming
this system to be a segregating system. We then checked the variation of the magnetic moments
as a function of the SRO parameter and found that the magnetic moment of Ni increases by
an appreciable fraction. The moment of Pd decreases. This gives rise to the increase of the
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Table 5. Calculated local and average magnetic moments in µB/atom of NiPd and NiPt alloys.
SRO and SRS denote short range order and short range segregation.

NiPd alloy

Method System Ni site Pd site Average

TB-LMTO Ordered (SR) 0.70 0.29 0.50
Ordered (NR) 0.70 0.26 0.48

ASR Disordered (SR) 0.76 0.31 0.54
Disordered (NR) 0.75 0.28 0.51
Disordered (SR) with SRS 0.90 0.27 0.59

Expt [3] Disordered 1.02 0.17 0.60

NiPt alloy

Method System Ni site Pt site Average

TB-LMTO Ordered (SR) 0.31 0.16 0.23
Ordered (NR) 0.65 0.22 0.44

ASR Disordered (SR) 0.30 0.11 0.20
Disordered (NR) 0.59 0.21 0.40
Disordered (SR) with SRO 0.27 0.14 0.21

Expt [2] Disordered 0.28 0.17 0.22

average magnetic moment. Calculated magnetic moments (0.90, 0.27 and 0.59 µB/atom for
Ni, Pd and the average in NiPd) including the effect of segregation in this system agree closely
with the corresponding experimental values (1.02, 0.17 and 0.59 µB/atom for Ni, Pd and the
average).

The average magnetic moments are higher for the disordered case,compared to the ordered
case, in NiPd. This is because of the tendency in NiPd toward disordering or clustering, which
allows Ni to be favourably surrounded by Ni, strengthening its local magnetic moment. In
NiPt, the tendency is toward ordering or Ni being favourably surrounded by Pt atoms, which
lowers the fragile local magnetic moment of Ni.

To our knowledge there is no experimental measurement available for local as well as
average magnetic moments in ordered NiPt and NiPd alloys. The experimental measurements
for local as well as average magnetic moments by Parra et al [2] for NiPt and by Cable et al
[3] for NiPd were for disordered alloys.

3.3.5. Curie temperature. We have applied the Mohn–Wohlfarth model to calculate the Curie
temperature, as explained in the theoretical and computational details. Our Curie temperature
calculation for NiPt with the relativistic correction (76 K) shows closer agreement with the
experimental value (100 K). In contrast, the Curie temperature without relativistic correction
in the electronic structure calculation turns out (199 K) to be higher than the experimental
estimate. This again supports the assertion that the relativistic effect plays a significant role in
the correct estimation of magnetic transitions as well as magnetic moments. In the NiPd system
the calculated Curie temperatures with (245 K) and without relativistic correction (199 K) do
not differ much, as in the case of magnetic moments as explained above. The slightly higher
value in the relativistic case may be due to the slightly higher (57.3 mRyd/atom) value of the
difference in d band centres than in the non-relativistic case (55.4 mRyd/atom). These values
of Curie temperatures with and without relativistic corrections do not actually match with
the experimental value (457 K). As we have explained above, in the connection of magnetic
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moments there is a possibility of enhancement of the magnetism due to the segregation tendency
of this system. Our calculation taking into account this segregation effect through a short range
order parameter does indeed show a Curie temperature (345 K) closer to the experimental
estimate. Therefore, one can argue that in the NiPd alloy system the atomic segregation
tendency leads to a strong enhancement in the magnetism.

4. Conclusions

Our calculation for formation energies shows that NiPt systems are stabilized by the inclusion
of relativistic effects. These effects ensure larger s–d hybridization by lowering s orbitals and
raising d orbitals and lower the strain and size mismatch in these alloys. Similar calculations
show NiPd to be unstable and there is very little effect of relativity in these systems. The
pair interaction calculations for these systems show NiPt have L10 as the stable ground state
structure, as predicted from experiments. The positive value of the first-nearest neighbour pair
energy in the NiPd system, even with the inclusion of relativistic effects, indicates that this
alloy tends to order, but experimentally it seems to remain disordered to low temperatures.

Relativistic corrections ensure that the local magnetic moment of Ni is higher in NiPd than
in NiPt, consistent with experiment. The low value of the local magnetic moment on the Ni
site in NiPt is facilitated by relativistic corrections again through lowering of the s potential of
Pt, which leads to a contraction of the s wavefunction and an increase in the s–d hybridization.
We have obtained a Curie temperature for NiPt reasonably comparable to the experimental
estimate. Our Curie temperature calculation including the short range segregation effect gives
an enhancement in the Curie temperature in the NiPd system in better agreement with the
experimental prediction than the calculation without it.
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